

LBSA Workshop for the Nairobi Convention GEF-WIOSAP Project 10 – 11 December 2018 Maputo, Mozambique

Birguy Lamizana Programme Officer, Nutrient Pollution sub-programme, Global Programme of Action for the Protection of the Marine Environment from Land-Based Activities (GPA)

Background

Some quick facts...

- 2.5 billion people live without good sanitation
- 80% of users of improved sanitation live in rural areas
- In Sub-Saharan Africa, treating diarrhoea consumes 12% of the health budget
- Conventional system are neither an ecological nor an economical solution for sanitation problems
- To supply rural areas with adequate sanitation facilities, sustainable solutions modelled on decentralised systems are required.

Some quick facts...

- Rate of return for sanitation investments estimated to be more than US\$5 for every US\$1spent (WHO 2012, World Bank 2013)
- Evidence shows that the benefits include improvements in:
 - Public health
 - The natural environment
 - Education
 - Economic development
 - Social outcomes
 - Gender equality
 - Poverty alleviation

Wastewater challenges

The main root causes include:

- Poor sewage systems
- Runoff from small scale mining operations
- Urban storm water
- Run off from agricultural activities
- Lack of knowledge on selection of appropriate technology
- Inadequate legal and regulatory framework
- Uncoordinated approach to coastal management
- Variation in institutional arrangements
- Low Stakeholder Involvement in wastewater management

Some of the solutions

- Adopting pertinent and flexible policy and institutional frameworks for close interaction between various players
- Updating data on wastewater management strategies
- Strengthening regional and global networks (e.g. on marine environment conservation)
- Creation of platforms through which appropriate blending of knowledge systems and requirements can occur
- Furthering capacity building, knowledge and awareness creation on matters relating to marine environment degradation as well as its conservation
- Technological developments & innovation (Example Technology Matrix for Wastewater)

Wastewater treatment technologies

Decentralised Technologies on Wastewater Management

- Septic Tanks
- Constructed Wetlands
- Stabilisation Ponds
- Composting Toilets
- Biodigestor
- Anaerobic Filter
- Duckweed Lagoons

Туре	Kind of treatment	Kind of wastewater treated	Advantages	Disadvantages	Nutrients removal
Septic Tank Source: Adam Bros Septo tark United Discourses (Septo tark United Discourses) Septo tark United Discourses (Septo tark United Discourses) Discourses (Septo tark United Discourses) Discou	sedimentation, flotation and digestion	Domestic wastewater (communities until 100 inhabitants)	Simple, durable, easy maintenance, small area required	Low treatment efficiency, necessity of a secondary treatment, effluent not odorless	COD, BOD, TSS; grease.
Subsurface Flow Constructed Wetlands	biological and physical processes	Domestic and agricultural wastewaters; small communities; tertiary treatment for industries.	Low or no energy requirements; Provide aesthetic, commercial and habitat value.	system clogging; recommended as a secondary treatment, large areas required;	TSS; COD; TN; TP.
Composting Toilets	unsaturated and aerobic conditions provide biological and physical decomposition	human excreta, toilet paper, carbon additive, food waste	Resulting "humus" used as a resource; conservation of water resources; recycling of nutrients.	If not well sized and maintained can be a environmental problem and a threat for human being, due to its contaminant potential	Volume reduced from 10 to 30%; pathogens.

Туре	Kind of treatment	Kind of wastewater treated	Advantages	Disadvantages	Nutrients removal
Biogas Digester	Sedimentation, flotation and digestion	human excreta, animal and agricultural wastes	Recycling of resource; gas produced is used for cooking and lighting	Expensive to build, difficult to operate. Poor maintenance leads to loss of gas production and blockage of the digester tank with solids.	long period of storage removes pathogens.
Anaerobic Filter	anaerobic degradation of suspended and dissolved solids	pre-settled domestic and Industrial wastewater of Narrow COD/BOD ratio	simple and fairly durable if well constructed and wastewater has been properly pre- treated, high treatment efficiency, little permanent space required	costly in construction because of special filter material, blockage of filter possible, effluent smells slightly despite high treatment efficiency	BOD, TDS, TSS
Duckweed Based Wastewater Stabilizations Ponds	sedimentation, anaerobic degradation and sludge stabilization	Domestic and agricultural wastewater;	No clogging risk; High nutrient removal rates	Necessity of large areas; necessity of constant harvesting; unsuitable in very windy regions.	BOD, SS, TN, TP, metals

Technological Matrix for Wastewater

Technological Matrix for Wastewater

- Decision making tool selecting appropriate wastewater systems in urban areas.
- Developed for non-technical people; no or little knowledge on wastewater or sanitation
- Assist in decision making to FIRST consider the entire spectrum of wastewater solutions based on suitability criteria

Technological Matrix for Wastewater

- Based on Compendium of Sanitation Systems and Technologies (Tilley et al., 2014) by Eawag, IWA and WSSCC (Water Supply and Sanitation Collaborative Council).
- Allows the user to provide both local conditions and priorities to serve as basis for ranking the different relevant technology systems
- An efficient and user-friendly 'filtering process'
 - Multi-criteria analysis that takes environmental, social and economic aspects into account

Why this tool?

- Contains factsheets for each of the technologies mentioned
- Narrows down the options hence allows efficient decision making
- Performs multi-criteria analysis (MCA) on different sanitation technologies

(MCA- Methods to compare all alternative options and to identify the best performing one on the basis of multiple factors)

Overview of processes...how does it work?

- Input from the user form is used in Step 1 to exclude certain technologies, and in Step 2 to rate them
- The score of each technology is furthermore based on the weights, which are also provided as input by the user
- Step 3: combines technologies into systems and displays their average score as output on the results page

Getting started

- Microsoft® Excel-based Tool
- Open ZIP file: Wastewater Technology Matrix
- Open Excel file enable macros; enable content
- Click START...you're on your way!

X 🖌	19 - (11 -	Ŧ							Wastewater Tech	nnology M	latrix 1803.xl	ism - N	Aicrosoft Exc
File	Home	Inse	rt Page	Layout F	ormulas	Data	Review V	iew					
Ê	🔏 Cut		Calibri	* 11	Ă Ă	= =	= - »	i w	rap Text	General	I	*	S ₽
Paste	Copy ▼	ainter	BIU		<u>ð</u> - <u>A</u> -	E 3		Е 🔤 м	erge & Center 🔻	\$ - 0	% , *	00. 00 ♦.€	Condition
	Clipboard	- Gi		Font	5		Aligr	nment	5	N	lumber	G.	Formatting
1	Security Warni	ng Ma	acros have b	een disable	Enable	Content							
	Q8	Ŧ	(=	f _x									
	A	В	С	D	E	F	G	Н	1	J	K	1	
1													
2													
3													
4													
5													
0													
0													
9													
10													
11													
12		diante	ad Manage										
13	Macros are	disabi	ea. You ne	ed to enab	le macros to	or this To	ool to functio	on.					
14													
15	To enable r	macros	, either:										
16													
17		1.	Select 'Alv	ways trust n	nacros from	this pub	lisher' and 'B	Enable Ma	acros'.				
18		-											
19		2.	or select'	options' an	d then 'Trus	talldocu	uments from	this publ	lisher' and 'ok'	•			
20		2	or select (enable this	content' Th	en click	'Yes' when a	sked (Do	vouwantton	nakethia	file a trus	ted dr	ocument'
21		5.	or select	enable tills	content . II	enence	ies whena	isked, Du	you want to n	nake tills	meatius	euuu	coment .
22													
12	Enable I	lacros	2										14

Opening screen

Language:

START

English

IMPORTANT! Try to answer as many questions as accurately as possible

1. Space and availability

 Enter basic attributes about location, number households, space availability for treatment, water supply, etc

Click 'Next'

ERFORM - Wasterwa	iter Technology	Matrix		×
: Space and availability	2: End products	3: Geology and local conditions		
1.1 Size of area [k	m2]:	20	1.2 Total number of households in the area: 100	
Average numb	er of people per ho	usehold: 4	1.4 Extra space available for treatment:	
1.5 Water supply:		1.6 Reliable electricity suppl	y: Organic matter available :	
• Piped		Yes	(Biodegradable plant material for composting process, for example: sawdust, leaves, grass)	
C Fetched		C No	C No	

2. Desirability of end products

- Indicate by relative desirability what might the end products of treatment be useful for
- Click 'Next'

SERFORM - Wasterwater Technology Matrix							×
1: Space and availability 2: End products 3: Geology and lo	cal conditions						
How desirable would the following options be as end product:	s? (Choose 1-5	for ead	7. 1=Not	at all. 5	=Very much.)		
	1	2	3	4	5		
2.1 Application / Irrigation / Fertiliser	c	c	c	۲	c		
Disposal / Discharge / Soil infiltration	C	0	۲	c	c		
Biogas / Electricity	0	۰	0	0	0		
the international						Back	Next

3. Geology and local conditions

- Specify the local conditions, vehicular accessibility and underlying geological/soil attributes
- Click 'Finish'

nd availability 2: End products 3: Geolo	ogy and local conditions	
3.1 Is the area prone to floods? • Yes • No • Unknown	3.2 Vehicular (septic truck or similar) access to households © Easy © Difficult/Limited © Unknown	3.3 Groundwater table is (at its highest) Cdeeper than 2 meters Cshallower than 2 meters C Unknown
3.4 Soil type	Sand C Gravel C (Mostly) h	edrock C Linknown

Weighting of criteria

- Each of the three criteria (Environmental, Economic and Social) is multiplied with a weight in the MCA
- These weights can be adjusted by answering the three questions in this user form
- NOTE: these answers will be important for the accuracy of results; take care that the correct weighting is applied
- Click 'Ok' to get the result

WEIGHTING OF CRITERIA - Wastewater Technology Matrix

X

Results

- Data is sorted in descending order of score, according to the MCA Matrix calculations
- Main score and partial score
 - Partial score: unweighted score for each of the criteria
- Suitable options in green
- Unsuited (excluded) options in red; assigned score of '0'

	USER INTERFACE	STORAGE	TRANSPORT	TREATMENT	REUSE/DISPOS/	. 8	CORE		Environ.	Econmic	Social
1	U.4 Pour Flush	S.9 Septic Tank			D.X2 Disposal		3.7		2.0	4.0	3.3
			C.2 Human p. E&T	T.14 Unpl. Dry.	D.X1 Application		5				
2	U.4 Pour Flush		C.4 Simp. Sewer	T.3 ABR	D.X1 Application		3.6		2.3	3.6	3.5
				T.14 Unpl. Dry.	D.X1 Application						
3	U.5 Cistern Flush		C.4 Simp. Sewer	T.3 ABR	D.X1 Application		3.6		2.3	3.4	3.6
				T.14 Unpl. Dry.	D.X1 Application						
4	U.5 Cistern Flush		C.4 Simp. Sewer	T.2 Imhoff tank	D.X1 Application		3.5		1.9	3.4	3.6
				T.14 Unpl. Dry.	D.X1 Application						
5	114 Pour Flush	S 9 Sentic Tank			D.X2 Disposal		35		2.0	4.0	33
			C.2 Human p. E&T	T.14 Unpl. Dry.	D.X2 Disposal		5.5				0.0
6	114 Pour Flush		C.4 Simp. Sewer	T.3 ABR	D.X2 Disposal		33		23	3.6	35
				T.14 Unpl. Dry.	D.X2 Disposal		5.5				
7	114 Pour Flush	S 12 Biogas Bo			D.13 Biogas		33		3.9	35	35
<u> </u>		0.12 Diogas 1 10.			D.X1 Application		5.5		0.0	0.0	0.0
0	115 Cistorn Flush		C.4 Simp. Sewer	T.3 ABR	D.X2 Disposal		33		23	34	3.6
Č	0.0 Cistenin Idsin			T.14 Unpl. Dry.	D.X2 Disposal		5.5		2.0	0.4	0.0
4	115 Cistorn Flush		C.4 Simp. Sewer	T.2 Imhoff tank	D.X2 Disposal		3.2		19	34	3.6
Ľ	0.0 Cisterin Idan			T.14 Unpl. Dry.	D.X2 Disposal		3.2		1.0	0.4	0.0
10	114 Pour Flush	S 12 Biogas Bo			D.13 Biogas		3.0		29	35	3.5
	o.tr odiridali	one blogas no.			D.X2 Disposal		5.0		0.0	0.0	0.0
11	U.4 Pour Flush	S.9 Septic Tank	C.4 Simp. Sewer	T.3 ABR	D.X2 Disposal		0.0		0.0	0.0	0.0
			C.3 Motorized E&T	T.14 Unpl. Dry.	D.X2 Disposal	-					
12	U.4 Pour Flush	S.9 Septic Tank	C.4 Simp. Sewer	T.3 ABR	D.X1 Application		0.0		0.0	0.0	0.0
			C.3 Motorized E&T	T.14 Unpl. Dry.	D.X1 Application	-					
13	U.1 Dry toilet	S.4 Double VIP			5.11 A		0.0		0.0	0.0	0.0
			C.2 Human p. E&T		D.X1 Application	-					
14	U.1 Dry toilet	S.4 Double VIP					0.0		0.0	0.0	0.0
			C.2 Human p. E&T		D.X2 Disposal	-					
15	U.4 Pour Flush	S.9 Septic Tank	C.4 Simp. Sewer	T.2 Imhoff tank	D.X2 Disposal		0.0		0.0	0.0	0.0
			C.3 Motorized E&T	T.14 Unpl. Dry.	D.X2 Disposal	_!					
16	U.4 Pour Flush	S.9 Septic Tank	C.4 Simp. Sewer	T.2 Imhoff tank	D.X1 Application		0.0		0.0	0.0	0.0
		-	C.3 Motorized E&T	T.14 Unpl. Dry.	D.X1 Application	_					
17					D.X2 Disposal		0.0		0.0	0.0	0.0
	U.4 Pour Flush	S.9 Septic Tank									
	U.4 Pour Flush	S.9 Septic Tank	C.3 Motorized E&T	T.14 Unpl. Dry.	D.X2 Disposal	_	0.0				
18	U.4 Pour Flush U.4 Pour Flush	S.9 Septic Tank	C.3 Motorized E&T	T.14 Unpl. Dry.	D.X2 Disposal D.X2 Disposal		0.0		0.0	0.0	0.0

Results

 Row = 1 sanitation system/sanitation chain of combination of technologies

Sudde pridse

Column = 5 technology steps or

vvaler phase

functional groups

RESULTS:

	USER INTERFACE	STORAGE	TRANSPOR	RT	TREATMENT	REUSE/DISPOSAL	SCORE		Environ	Social	
1	11 4 Pour Flush	S 9 Sentic Tank				D.X2 Disposal	3.7		2.0	4.0	33
1		0.5 ocpue runie	C.2 Humar	n p. E&T	T.14 Unpl. Dry.	D.X1 Application	517		2.0	1.0	0.0
2	II 4 Pour Flush		C.4 Simp.	iewer	T.3 ABR	D.X1 Application	36		23	3.6	35
					T.14 Unpl. Dry.	D.X1 Application	5.0		2.5	5.0	5.5
3	U.5 Cistern Flush		C.4 Simp.	iewer	T.3 ABR	D.X1 Application	3.6		2.3	3.4	3.6
					T.14 Unpl. Dry.	D.X1 Application					
			C 4 Simp	Sewer	T 2 Imhoff tank	D X1 Application					
				Clude							

Information links to technology options

Click to access additional documentation

RESULTS:

Re-evaluation

- Note the weighting calculated
- Have the option to re-evaluate the criteria weightings

Detail of the MCA

- For each criterion there are numerous indicators
- Each indicator is rated 1-5 based on a literature review and expert's consultation cannot be changed by the user
- If the pre-screening eliminates a technology a red 'X' and a text explanation will be displayed in the 'Exclusion Field'
- The colour of each cell indicates its value from high to low (green to red).

Core SDG targets

- Target 6.2 access to adequate and equitable sanitation and hygiene
- Target 6.3 good ambient water quality
- Target 6B participation of local communities in improving water and sanitation mañagement
- Target 14.1 reduced nutrient pollution in the marine environment

Resources and contact information

Contact at United Nations Environment Programme

• Birguy Lamizana, birguy.lamizana@un.org; UN Environment

For more information visit us at

https://www.unenvironment.org/explore-topics/oceans-seas/what-wedo/addressing-land-based-pollution

United Nations Environment Programme GPA

Global Programme of Action for the Protection of the Marine Environment from Land-based Activities