

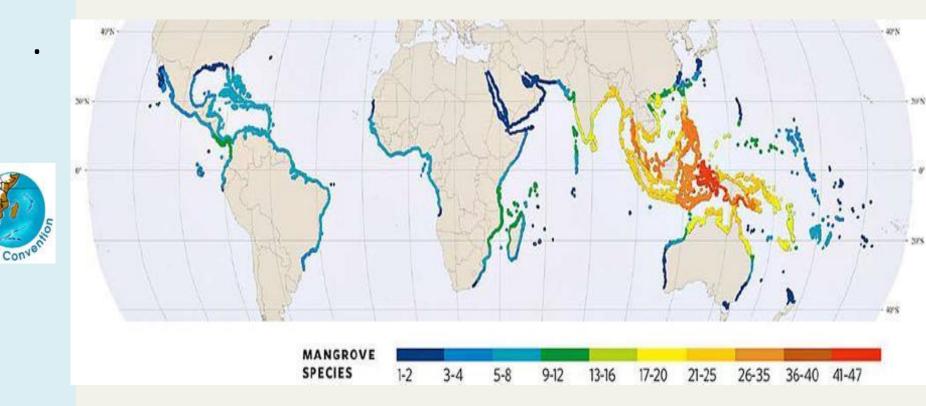
Guidelines on Mangrove Ecosystem Restoration for the Western Indian Ocean Region

James Kairo¹ & Mwita Mangora²

¹Kenya Marine and Fisheries Research Institute, Mombasa ²Institute of Marine Sciences, Zanzibar

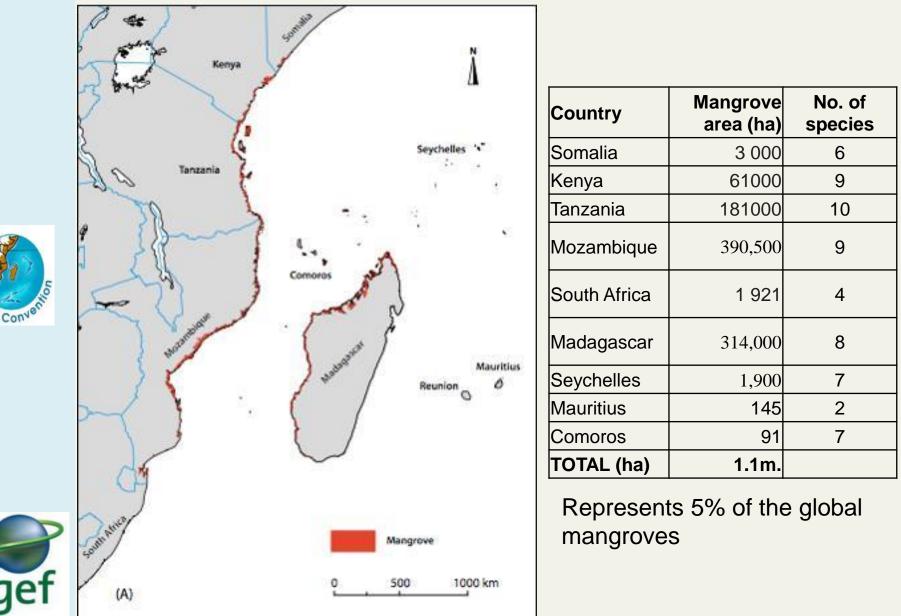
With contributions from WIO-Mangrove Network

Lilian Mwihaki, Robert M. Runya, Abel Kiprono, Elinasi Monga, Célia Macamo, Henriques Balidy, Zafyson H. Randrianasolo, Sachooda Ragoonaden, Mohammed Ahmed


Presenter: Salomão Bandeira

UNEP, Nairobi Convention WIOSAP & SAPPHIRE PMU Meeting 25th to 27th June 2019 Durban, South Africa Session: Validation of WIOSAP Guidelines/Toolkits

Global Mangrove Distribution



- Global extent- 13.7 million ha; 5% in WIO (Giri et al. 2011)
- WIO with 9-10 mangrove species

Mangroves of the WIO

An old growth Avicennia stand, Rufiji, Tanzania

Mangroves and SDG/NDC

Economy Economy Ecology Environment

- Mangroves contributes upto 10% of annual organic carbon sequestration to the coastal zone (Sademe et al., 2019; Nature)
- 70% of coastal fisheries depend one way or another on mangrove ecosystem (Barbier et al., 2011, Ecological monographs)

...direct use values of mangroves

environment United Nations Environment Progra Regional and global benefits

Ecosystem services estimated at 220,000 US\$/ha/yr

Drivers of Change

- Over- exploitation
- Conversion pressure
- Pollution effects
- Climate change

Root causes

- Population pressure
- Poverty
- Governance/corruption/legislations

Socio-economic impacts of mangrove degradation

- Loss of harvestable resources
- Reduced mangrove resiliency.
- Increased poverty
- Loss of life and property
 - Reduced revenue from fisheries
 - **Reduced touristic and aesthetic value**
- Reduced food security
- Loss of cultural heritage
- Reduced land value in coastal areas

Why restore mangroves?

To enhance **productivity, stability as** well as **functional integrity** of mangroves and ecosystem service they provide

- Coastal protection and stability
- Enhance biodiversity and fisheries
- **Resource sustainability** e.g. wood products
- Water purification
- Carbon capture and storage
- Aesthetic values
- Creation of employment

Objectives of the WIO mangrove restoration guidelines


- Highlights status and conditions of mangroves,.... and need to restore them
- Serve as documentation of previous mangrove restoration activities
- **Outline best practices** from previous mangrove restoration activities
- Help users in the region to focus on what is most likely to work for them
- Assist users to better plan and <u>match available tools</u> to their situation

Approaches used in developing the guidelines

- Peer reviewed publications/other guidelines
- Country expert knowledge and contributions
 - Field site visits and observations
- Stakeholder surveys and consultations
- Community best practices

²² University of Technology, Sydney, 11 Darnley Street, Gordon, NSW 2072, Australia

Structure of the Guideline

Chapter 1. Background information

Chapter 2. A review of mangrove ecosystem.

Chapter 3.0 Mangrove restoration-What is it and when to use it

Chapter 4.0 Identification of restoration sites

Chapter 5.0 Principles of best practice – a restoration protocol

Chapter 6.0 Implementing a mangrove restoration monitoring plan

Chapter 7.0 How it has worked, lessons learn and recommendations

- 1. Mangrove reforestation at Gazi bay, Kenya
- 2. Mangrove reforestation in Tanzania
- 3. Mangrove reforestation in Mozambique
- 4. Mangrove reforestation in Madagascar
- 5. Mangrove afforestation in Mauritius

Annex 1: Key Methods for Site Assessment: -

Guidelines on Mangrove Ecosystem Restoration for the Western Indian Ocean Region

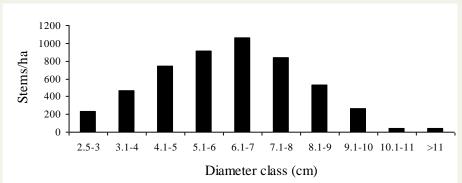
Typology of mangrove restoration

Natural regeneration

- Uses natural successional process mediated by biophysical factors
- Cheap to establish
- Saplings establish more vigorous
 - Limited by absence of mother trees

Artificial regeneration

- Use of direct planting (propagules/saplings/wildings)
- Species composition can be controlled
- It can be expensive
- Establishes simple systems



A successful mangrove restoration- Gazi bay

- Stand density 5130 stems/ha
- 86% of the wood of the required quality and size (>5cm dbh)
- Biomass = 106.6t/ha
- Even aged forest

(Kairo et al 2008. Forest Ecology and Management

Wasted effort!

Conv

Failed restoration project in Vanga, Kenya

Causes of restoration failures

- Poor **species-site** matching
- Poor understanding of species ecology and hydrological requirements
- Changes in site conditions
- Lack of monitoring plan and post planting care
- Inadequate financing
- Lack of **community participation**
- Limited **extension services**

Steps in Planning, Implementation and Monitoring restoration projects

Project Planning Phase

Step 1: Problem realization

Step 2: Defining the purpose of restoration

Step 3: Understanding governance

Step 4: Stakeholder analysis

Step 5: Community

Project Implementation Phase

Step 6: Site assessment and preparation Step 7: Planting

Project Monitoring and Evaluation Phase

Step 8: Monitoring and Evaluation

Step 9: Feedback and Adjustment

Collection, transportation and sorting propagules

Species	Planting material	Peak availability of propagules*	Indicator of maturity	Size of maturity	Storage (max days)	Treatment
Avicennia marina	Seedling	April-May	Seed-coat turns light yellow, wrinkly	Weight of 100 seeds>150g	5	Soak in fresh water (>12 hrs)
Bruguiera gymnorrhiza	Propagule	April-July	Reddish brown body	Propagule length >15 cm	10	Cool wet conditions
Ceriops tagal	Propagule	February- March	Light yellow collar, brown/green body	Propagule lenth>20cm	15	Cool wet conditions
Rhizophora mucronata	Propagule	March-June	Yellow collar, green body	Propagule length >40 cm	30	Cool wet conditions

Step-by- step – establishment and management of mangrove nurseries – Avicennia marina

Seed selection

potting

Monitoring of replanted mangroves

- Growth rates
- Sediment accretion
- Carbon content/biomass
- Nutrient cycling
- Environmental variables
- Survival/mortality rate
- Secondary succession

Monitoring schedule of mangrove restoration projects

Time (months)	Activity	Remarks/parameters to measure
0+3 months	 Preparing report of nursery and 	survival %
6	 Assessment – seedling survival and growth 	Survival %Height
9	 Assessment – seedling survival and growth 	Survival (%)Height, diameter
12	 Assessment – seedling survival Assessment for animal types and abundance Xx Xx 	 Survival (%) Height, diameter, no. of leaves for tagged individuals Xx Xx Xx xx
5yrs	0	•

Case study 1: Mikoko Pamoja, Kenya

- Restoration and protection of mangroves through sale of carbon credits
- Community based payments for mangrove carbon project
- Certified under Plan Vivo Standard a voluntary carbon market
- Income generated support local development programs
- Replication & up-scaling = from Gazi Bay to other areas...
- Successful model

nited Nations

ironment Progra

Case study 1: Mikoko Pamoja, Kenya

- "Mangroves Together"
- The first community-led mangrove PES project in the world

Objective: Restoration and protection of mangroves through sale of **carbon credits**

- Verified 20yrs by Plan Vivo standards
- Carbon sold into voluntary market = $3,000 \text{ tCO}_2$
- Income support local development project
 s

UN environment united Nations Environment Programme ikoko Pamoja results

- Job creation
- Livelihood support
 - Ecotourism
 - Energy efficient stoves

- Community services
 - **Education**
 - Water & Sanitation
- Mangrove reforestation
- Replication/upscaling in Vanga Bay

Case study 2: Rufiji Delta, Tanzania

- Local community groups of 8-10 men and woman are involved in reforestation practices on hired basis
- Restoration activities are facilitated by donor agencies (UNDP, UNEP)
- 1000 ha planted between 2014 and 2016
- Sustainability is at stake

Case study 3: Hydrological Restoration – Quelimane and Limpopo, Mozambique

- Opening of artificial channel to irrigate degraded mangrove areas to to induce natural recolonization
- Labor intensive/expensive
- Mostly community/government driven

Case study 4: NGO – Community partnerships, SW Madagascar

 Voluntary participation in mangrove restoration through Education and Awareness campaign

- Two approaches
 - No cash remuneration sometimes food for work...
 - Financial compensation for community labour – collection of propagule collection, nursery establishment, outplanting...

- NO FREE LABOUR/LUNCH

Case study 5: Mangrove gardening... at Le Morne , Mauritius

- Largely government sponsored...
- Nature hate order
- Potential effects to other ecosystem services

Case study 6: Investing in future generations, Seychelles

- Use of school children ensures long term community commitment
- Building a mangrove practitioners...
- Our future is now

Recommendation and way forward

- Continued creation of awareness of true value of mangrove ecosystem at all levels
- Training staff on **ecological mangrove restoration**
- Understanding hydrological restoration needs
- Enhanced partnership on mangrove restoration and management
- Promote incentive scheme in mangrove restoration and management
- Long-term monitoring of reforestation projects
- Support alternative livelihood and income generating activities in communities adjacent the mangrove areas...
- Mainstream mangrove conservation with national development and climate change agenda.

The PSC requests the following:

- 1. Approve adoption of the Guideline for application within relevant demo projects supported under WIOSAP and also wider regional application.
- 2. Recommend testing of the Guideline across the region

3. Recommend revision of the Guideline as appropriate after testing

4. Recommend translation of the Guideline into key languages in the region as may be requested by any interested country

Acknowledgments

With funding from:

Conve

