

United Nations Environment Programme

Estuary & Marine EFlows in RSA information provided and uses for that information

Lara van Niekerk

UNEP, Nairobi Convention 25th to 27th November 2019 Cape Town

Orange Estuary

- Braided channels
- Islands
- Back water/Refuge areas

- Variety of habitat types
- Full salinity gradient
- High productivity

United Nations Environment Programme

Zonation

Oppenheimer Bridge ~10km upstream

Sampling at Brandkaros (35 km upstream)

Abiotic States

State	Description	Flow range (m ³ /s)
1	Closed for extended period and hyper saline	0
2	Closed, with strong marine influence	0-5
3	Marine dominated (open mouth)	5-20
4	Brackish (open mouth)	20-50
5	Freshwater dominated (open mouth)	>50

Environment Programme

Abiotic States

T							
	PARAMETER	STATE 1: HYPER SALINE	STATE 2: CLOSED	STATE 3: MARINE	STATE 4: BRACKISH	STATE 5: FRESH	
	Flow range (m ³ /s)	0	0 - 5	5 - 20	20 - 50	>50	
	Mouth condition	Closed	Closed	Open	Open	Open	
	Water level variation	None	None	1.5 m	1.5 m	1.5 m	
	Inundation	dation None, very low water level Intertid		tertidal and some of supratidal Intertidal area		Intertidal & Floodplain	
	Circulation	Wind mixing	Wind mixing	Tidal	Freshwater flushing and Tidal	Freshwater flushing	
Nair	Salinity (ppt)*	Reference 35 35 35 35 Future 45 45 35	25 10 30 15	20 0 30 5	5 0 25 0	0 0 5 0	

UN () environment

Abiotic States

United Nations Environment Programme

United Nations Environment Programme

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Closed
1920	49.92	17.98	23.50	468.19	416.70	322.70	961.36	325.39	44.91	252.15	111.04	6.34	0
1921	64.81	310.23	144.52	53.70	478.22	306.96	74.27	23.01	15.79	13.45	4.80	29.69	1
1922	23.01	103.70	96.61	53.77	116.76	147.63	54.58	20.51	14.84	13.38	6.82	0.00	1
1923	0.00	1270.00	1292.29	3455.42	1852.31	1164.93	694.45	261.46	139.44	93.92	141.82	25.97	1
1924	156.42	1068.49	990.91	178.79	237.62	646.08	301.47	238.07	104.46	32.12	139.80	53.58	0
1925	6.57	40.42	79.82	249.57	277.33	589.77	356.01	382.61	140.25	48.60	23.43	1.37	1
1926	137.91	2196.85	656.46	1400.41	1907.08	552.00	120.71	29.58	24.75	20.46	10.92	0.00	1
1927	10.48	104.61	208.70	511.20	940.69	249.15	287.90	150.00	170.20	19.29	97.70	20.39	
1920	200.97	622.20	208.30	156.34	360.04	704.14	476.13	327.08	131.07	49.74	237.05	244.30	i i
1930	106.74	268.46	467.47	662.35	1226.76	340.08	282.80	70.17	26.66	32.03	23.71	25.41	ŏ
1931	158.52	33.87	31.34	507.22	903.80	897.41	343.95	116.57	49.74	23.70	87.72	46.21	ŏ
1932	217.39	370.33	1118.81	562.18	129.72	246.90	1317.83	1321.44	376.09	523.85	279.17	195.49	0
1933	760.91	2010.47	1629.23	790.79	2316.41	709.67	146.18	57.10	167.43	80.96	23.17	211.46	0
1934	292.87	176.08	17.52	24.66	234.43	983.34	309.70	67.13	48.20	28.16	12.33	0.00	1
1935	0.00	0.00	41.80	673.01	540.38	460.73	242.98	349.79	139.24	34.31	12.55	0.00	а
1936	274.41	225.86	84.10	127.51	300.14	229.74	264.84	104.86	54.88	25.55	19.50	129.58	0
1937	215.02	170.86	538.51	509.34	413.66	2327.13	904.54	107.19	38.15	20.34	10.33	0.69	1
1938	44.65	56.68	21.50	163.86	179.88	256.53	144.77	83.25	44.93	26.25	13.60	0.61	1
1989	41.01	320.55	012.00	299.52	055.90	1800.99	1820.26	801.10	205.29	125.08	329.80	140.00	
1940	602.19	182.03	502.06	174.12	2/9.29	201.04	183.62	84.20	20.02	91.00	31.31	25.21	
1042	35.60	100.00	241.00	100.00	1520.30	654.17	385.47	154.44	48.57	205.50	18.72	0.52	, i
1943	147.37	185.47	212.55	243.49	437.21	1936.27	947.09	117.48	56.22	27.46	10.72	0.00	1
1944	9.03	133.82	186.27	1519.74	2726.45	736.97	298.43	136.05	69.02	47.34	18.50	0.18	1
1945	42.01	241.92	398.62	272.86	1313.98	2034.77	1233.47	217.41	76.72	40.35	17.34	3.85	1
1946	148.37	377.41	1742.30	887.99	352.12	520.21	246.04	49.18	39.03	147.11	150.68	1926.21	0
1947	1933.13	682.13	373.66	1309.86	460.72	121.14	244.93	320.45	136.48	25.07	15.83	37.70	0
1948	19.32	257.41	503.24	254.21	282.32	156.60	425.52	647.05	185.69	161.45	79.12	14.34	0
1949	153.92	302.29	584.58	322.74	479.81	528.70	295.58	126.31	56.38	38.15	70.38	50.52	0
1950	124.63	290.21	693.57	383.80	160.73	1067.39	926.34	328.32	204.71	164.08	71.87	17.44	0
1951	8.15	487.56	609.23	205.50	1551.28	536.70	140.38	147.29	42.39	20.50	10.41	10.38	0
1952	60.62	497.81	298.00	1891.52	946.20	858.85	928.48	211.01	/1.4/	1/5.8/	85.72	27.04	
1950	00.02	/12.10	200.40	375.70	200.32	20.34	349.70	106.05	20.88	50.47	52.05	06.02	
1955	86.00	111.06	295.14	1252.89	1091.16	125.33	37.10	24.36	16.27	917	6.47	90.02	1
1956	12.82	77.55	315.12	1934.85	2273 69	753.47	1349.07	596.57	381.47	95.85	44.53	26.55	
1957	19.82	188.84	187.47	37.53	15.07	332.70	300.97	265.14	88.57	49.28	18.92	33.95	ŏ
1958	7.61	22.11	280.99	68.94	219.85	625.25	450.82	186.46	93.40	31.75	21.63	0.15	1
1959	322.45	153.51	309.91	139.94	224.21	40.75	4.74	5.78	6.70	10.92	16.28	54.03	1
1960	265.78	154.92	428.78	432.07	536.09	225.94	481.72	225.72	54.57	39.00	23.42	18.39	0
1961	19.66	169.17	306.63	1013.01	1590.71	1769.19	684.17	219.09	65.38	31.36	20.34	7.65	0
1962	52.18	115.84	45.75	2.34	374.17	282.11	197.34	48.77	23.30	11.58	97.35	71.42	1
1963	79.69	127.42	351.33	3533.90	5157.59	2985.24	874.58	366.11	174.52	63.54	429.10	101.99	0
1964	18.02	801.90	699.30	782.91	2312.85	1285.41	478.22	118.82	63.06	89.58	44.48	99.50	0
1905	188.15	262.17	1298.01	3005.70	3808.32	3877.99	1/80.09	/28.90	281.88	199.90	81.8/	128.2/	
1900	207.50	100.54	210 55	1261.43	704 27	630.56	1101.26	257.71	90.77	50.68	41.51	158.04	i i
1968	214 22	79.13	656.46	222.24	349.04	202.78	41.74	46.20	53.62	86.67	422.04	274 74	ŏ
1969	299.28	209.76	257.55	244.83	530.46	465.14	209.36	25.55	15.99	15.91	92.87	145.01	ŏ
1970	95.62	211.29	297.49	893.35	1063.00	683.29	140.13	112.00	182.12	44.79	258.10	249.50	0
1971	61.60	123.63	339.74	164.55	81.50	115.00	494.54	194.99	65.16	61.90	38.27	22.27	0
1972	176.83	548.71	55.42	26.48	22.89	32.18	43.77	47.58	46.84	59.18	45.32	12.86	0
1973	92.01	460.32	519.70	496.97	109.06	146.23	151.95	113.38	30.18	21.05	29.23	64.94	0
1974	71.64	123.19	80.42	118.01	654.08	348.24	99.08	18.42	22.52	15.28	8.10	0.00	1
1975	121.07	470.96	874.38	428.34	324.56	165.79	130.55	43.46	71.39	27.03	27.13	105.10	0
1976	355.38	992.29	193.99	126.77	179.84	178.90	179.36	41.68	14.67	13.75	80.82	1476.83	0
1977	1401.78	/09.08	208.13	202.09	3828.05	3849.40	920.51	220.89	140.04	111.84	119.82	201.00	
1978	32.17	100.11 508.42	725.24	205.62	2170.75	656.60	653.10	208.17	271.82 92.09	100.20	100.75	46.25	
1090	7.63	0.00	87.39	1182.43	1407 54	054.44	250.45	41.02	32.09	27.79	24.09	30.76	1
1981	1364.79	545.41	243.70	78.04	37.57	47.53	24.97	5.23	7.13	6.85	16.06	15.38	i i
1982	55.53	487,93	97,12	51.76	322.26	201.33	183.87	77,96	16.87	10.11	15.75	0.24	1
1983	703.59	350.89	393.27	874.66	1493.41	323.04	301.80	108.23	29.28	26.24	25.04	7.56	0
1984	0.00	0.00	1.00	80.14	86.82	275.59	192.31	67.62	29.01	14.34	18.33	9.69	3
1985	81.83	365.72	1609.86	1253.59	2297.69	1158.84	222.75	117.42	58.65	92.14	76.74	35.65	0
													2
State 1	0.00	State 2	0.0-5	State 3	5-20	State 4	20-50	State 5	>50		Floods	> 2000	

Reference

United Nations Environment Programme

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Closed
1920	17.29	17.47	16.84	22.55	26.41	46.38	59.59	21.55	13.60	66.14	61.48	10.09	0
1921	17.43	20.32	16.58	16.47	10.62	23.96	27.27	19.97	13.43	10.19	10.11	10.07	0
1922	9.14	17.49	16.94	17.20	16.47	23.00	25.78	17.90	11.75	9.00	9.70	10.04	0
1920	18.73	345.03	662.44	20.20	30.66	162.11	130.35	101.87	51.28	10.05	62.38	10.05	ő
1925	17.25	17.89	16.46	16.42	14.97	107.08	107.50	159.15	39.90	10.30	10.23	10.63	ŏ
1926	17.75	830.02	190.40	788.19	1401.11	268.36	59.27	20.11	13.43	10.19	10.13	10.02	0
1927	17.14	17.54	20.41	30.84	72.93	29.45	20.35	32.22	16.74	11.10	10.36	10.03	0
1928	17.46	10.15	31.25	68.00	1475.20	414.16	79.62	24.83	14.59	12.62	133.37	51.13	0
1929	19.72	192.82	132.67	19.95	55.51	75.85	230.38	216.07	35.06	11.15	10.15	16.60	0
1930	18.60	21.84	129.74	293.04	490.63	184.27	118.73	36.14	19.00	10.46	10.36	10.04	0
1932	26.16	20.22	108.30	180.72	10.09	26.88	920.20	1256.11	308.10	406.03	145.71	30.47	ő
1933	394.88	1712.55	1344.68	392.46	2111.18	500.52	31.51	20.26	30.29	11.27	10.54	10.09	ŏ
1934	97.47	36.06	16.35	17.01	15.03	277.42	84.56	20.14	13.39	10.80	10.26	10.04	0
1935	17.90	17.55	20.62	23.99	16.20	27.70	58.75	31.46	15.37	10.24	10.15	10.46	0
1936	17.52	17.48	16.37	15.89	14.82	16.52	32.30	19.31	11.71	9.16	10.13	10.03	0
1937	17.46	17.31	17.63	15.70	16.67	608.60	741.25	43.44	34.57	10.30	10.18	10.02	0
1938	17.35	17.71	17.58	9.15	12.71	25.89	403.29	19.38	203.04	9.25	9.75	10.04	0
1940	10.21	17.50	36.46	34.17	25.44	32.16	25.08	21.38	15.30	10.74	10.17	10.02	ő
1941	17.48	17.09	18.37	16.42	129.98	114.52	28.12	18.61	11.46	89.53	37.59	10.07	ŏ
1942	17.56	18.70	16.87	16.42	113.39	117.44	35.03	25.10	13.35	10.21	10.61	10.16	0
1943	17.36	18.97	47.22	34.54	10.08	532.89	567.11	45.30	16.77	10.99	10.39	10.06	0
1944	17.19	17.40	16.43	135.69	2024.84	509.13	190.81	57.33	18.29	14.06	10.61	10.16	0
1945	17.82	22.44	21.08	16.98	224.63	1183.07	728.59	140.80	20.33	11.95	10.99	10.02	0
1946	17.58	18.23	890.15	500.40	64.98	180.77	112.25	24.93	16.13	19.40	10.63	1511.09	0
1947	1580.75	17.63	23.01	24.07	20.71	20.80	26.04	221.43	110.52	03.33	16.02	10.02	
1949	17.33	17.95	16.66	16.54	30.30	199.10	118.75	63.53	14.10	10.69	15.59	10.03	ŏ
1950	17.36	17.84	94.17	87.70	14.98	346.39	670.47	235.81	236.49	90.73	33.10	10.07	0
1951	17.14	22.88	11.52	19.18	948.63	335.38	21.87	132.60	16.90	10.85	11.03	10.40	0
1952	17.17	20.58	18.08	486.32	418.55	599.62	745.60	137.13	31.29	51.51	24.29	10.19	0
1953	17.81	59.06	112.39	16.50	14.80	129.07	243.38	18.01	11.58	18.87	10.00	11.19	0
1954	132.19	277.42	137.62	130.13	14.55	21.36	41.98	22.62	13.08	10.27	10.20	10.02	0
1955	10.07	19.00	16.10	200.75	1620.83	447.05	1268.68	660.67	270.28	45.52	11.38	10.02	ő
1957	17.76	15.04	21.53	16.42	14.80	106.00	65.80	56.80	26.98	10.37	10.24	10.02	ŏ
1958	17.47	14.60	12.14	16.45	57.98	42.06	35.84	22.89	14.28	10.28	10.27	10.02	0
1959	17.58	17.10	16.35	16.42	20.01	27.42	24.20	18.11	11.80	8.80	10.41	10.03	0
1960	10.89	18.93	17.42	14.98	26.39	33.81	29.87	21.36	13.57	17.63	12.93	10.09	0
1961	17.66	17.25	16.25	124.30	100.08	324.05	298.58	131.51	14.49	10.25	10.18	10.02	0
1902	17.19	17.09	25.74	1237.04	20.05	2243.30	90.00 551.83	175.38	53.31	16.24	138.01	30.85	ů č
1964	17.94	108.84	337.75	455.50	1953.54	872.27	289.35	63.57	16.90	32.02	10.30	10.06	ŏ
1965	17.24	18.02	676.71	2108.52	2903.04	3205.76	1451.27	540.92	163.66	46.98	17.30	11.51	0
1966	669.80	530.32	54.67	114.99	879.57	833.72	151.62	66.69	16.29	10.45	9.90	9.90	0
1967	17.92	21.75	17.90	452.17	299.64	504.90	867.42	165.90	39.59	13.98	10.41	10.14	0
1968	18.02	17.34	16.38	24.04	77.85	39.62	25.31	19.63	16.45	12.62	42.64	17.28	0
1909	27.74	23.02	18.32	38.42	223.37	92.01	30.62	49.94	13.10	10.14	145.90	102.20	
1971	17.47	18.76	19.16	16.43	14.87	21.06	35.50	20.93	12.21	12.21	10.26	10.02	ŏ
1972	17.77	17.63	13.74	16.59	14.82	21.10	18.97	21.40	11.96	8.79	9.62	10.06	0
1973	17.55	20.58	13.22	16.52	14.95	18.99	22.81	18.97	11.47	9.09	10.16	10.02	0
1974	17.69	17.77	16.35	15.44	22.40	22.90	33.87	18.43	11.46	8.79	10.10	10.02	0
1975	20.92	24.01	53.29	52.04	7.71	28.69	42.57	21.59	35.44	16.01	9.69	10.06	0
1976	17.09	17.89	10.25	10.42	7.47	28.08	28.85	150.10	02.82	9.00	9.70	273.47	0
1978	190.67	162.74	371.87	546.80	1903 18	518 10	248.68	124.16	140.02	51.08	63.37	10.05	0
1979	17.15	18.00	16.40	16.45	17.70	212.71	452.94	163.69	55.25	45.72	10.14	10.02	ŏ
1980	17.13	16.96	17.18	188.31	882.95	690.03	120.56	42.28	15.44	11.20	11.44	11.57	0
1981	570.82	363.53	41.00	15.20	14.80	19.26	24.83	17.85	11.46	8.81	10.13	10.19	0
1982	17.48	18.12	16.35	16.47	18.18	26.08	35.76	18.52	10.46	9.44	10.15	10.02	0
1983	18.30	19.23	16.40	23.67	105.04	56.68	113.41	65.14	13.42	10.69	10.14	10.02	0
1984	17.16	20.17	10.25	14.05	14.89	28.58	126.63	21.26	14.29	28.78	11.51	10.67	0
	10.00	200.27	00.20	5677-128	1100.10	120.02		101.10	11.10	20.70	10.00	1.12	Ŭ,
State 1	0.00	State 2	0.0-5	State 3	5-20	State 4	20-50	State 5	>50		Floods	> 2000	

Present

Conclusions

Reserve process accurately predicted the estuary life cycle Accuracy of flow data a major short coming Stop base flow & hydro releases: Increase mouth closure Back-flooding in saltmarshes Still needs higher flows and floods to reset Vioolsdrift Dam with high wall: Different type of estuary!!!

Orange River Nearshore Environment

United Nations Environment Programme

Pressure [db]

River load: higher silt content prior to major dam construction till 1970s After which higher clay fraction due to trapping of coarser fractions by dams 2011 flood (1:20yr event) still carried large sediment load & resulted in large plume off the mouth, but both would have been much more under Reference state...

- Off set by Namdeb mining pushing out coast
- Still assist in maintain a more natural sediment composition (fines vs coarse)

Scenarios

	Occurrences in 66 years												
		Natural	Present	Sc2	Sc3	Sc4	Sc5	Sc6a	Sc6				
Inside	< 150	238	571	585	583	471	545	668	668				
Estuary													
Pulse	150-1000	350	139	122	126	251	183	72	72				
Small floods	1000-5000	179	74	77	74	62	58	50	50				
Large Floods	>5000	25	8	8	9	8	6	2	2				

% Occurrences in 66 years											
NaturalPresentSc2Sc3Sc4Sc5Sc6a								Sc6a	Sc6		
Inside Estuary	< 150	30	72	74	74	59	69	84	84		
Pulse	150-1000	44	18	15	16	32	23	9	9		
Small floods	1000-5000	23	9	10	9	8	7	6	6		
Large Floods	>5000	3	1	1	1	1	1	0			

Scenarios

Model Results: Surface Turbidity (max)

1988 (1:100 yr event)

2010 (1:20 yr event) CSIR

Model Results: Bottom Turbidity (max)

1988 (1:100 yr event)

2010 (1:20 yr event)

relationship

Change ratings

	Significance Rating	Metric reported as a % of the magnitude of change from Reference	Comment				
	3	175% to 200%	Highly significant increase				
	2	150% to 175%	Moderately significant increase				
	1	125% to 150%	Discernible increase				
	0	75% to 125%	Minimal change				
	-1	50% to 75%	Discernible decrease				
	-2	25% to 50%	Moderately significant decrease				
C	SIR -3	0% to 25%	Highly significant decrease				

Degree of change for future scenarios

- Freshwater, dissolved reactive silicate (DRS), turbidity and sediment inflows to the nearshore marine environment under the various proposed future scenarios.
- The inflows for the various scenarios are expressed in terms of the significance ratings specified relative to reference conditions.

Time line	Scenario	Total freshwater dischargo	Total Discharge of Sediments (annual average of 66-year period)						
		volume	Salinity	DRS	Turbidity	Sediments			
<120 yrs	Reference	0	0	0	0	0			
2010	Present	-2	-2	-2	-2	-2			
	Scenario 2	-2	-2	-2	-2	-2			
Near	Scenario 3	-2	-2	-2	-2	-2			
future	Scenario 4	-2	-2	-2	-1 / -2	-2			
<2030	Scenario 5	-2	-2	-2	-2	-2			
Far	Scenario 6	-3	-3	-3	-3	-3			
Future									
>2030	Scenario 7	-3	-3	-3	-3	-3			

UAssessment of the responses of the key ecosystem services /biotic component to predicted abiotic changes under the various flow scenarios

Component	Natural	Present 2010		Near 1 < 2	Far future >2030			
Component	-120 yrs		Sc2	Sc3	Sc4	Sc5	Sc6	Sc7
Phytoplankton	-2	+2	+2	+2	+3	+2	+3	+3
Macrophytes	-3	0	0	0	-1	0	+3	+3
Habitat-forming macrophytes (kelps)	-3	0	0	0	-1	0	+3	+3
Soft-sediment macrofauna	+3 ?	0	0	0	+1 ?	0	-1 ?	-1 ?
Reef-associated macrofauna	-3	0	0	0	-1	0	+3	+3
Rock Lobster	-3	0	0	0	-1	0	+3	+3
Benthic biodiversity	-3	0	0	0	-1	0	+3	+3
Nomadic coastal fish (e.g. kob)	+3	-2	-2	-2	-1	-2	-3	-3
Demersal soft sediment fish (e.g. sole)	+3	-3	-3	-3	-3	-3	-3	-3
Small-pelagic fish (e.g. anchovy)	+3	-2	-2	-2	-1	-2	-3	-3
Intertidal, subtidal, surf-zone fish	+3	-1	-1	-1	0	-1	-1	-1

Marine : eflows

Based on model simulations & review on the responses of marine flora and fauna to the abiotic drivers:

- Present, scenarios 2, 3 and 4: Not possible to discern changes in biotic components
- Scenario 5: slight changes may be expected
- Scenarios 6 and 7: significantly different

Increase in marine benthic biodiversity in the vicinity of the river mouth, as the abiotic stressors decline or are removed entirely should the mouth remain closed for extended periods of time. Marine communities are expected to become more similar to those in West Coast habitats not influenced by river inflows.

Take home message

Water flowing into to sea is not wasted!!!!

River floods flowing into the sea provides a number of crucial functions:

- Sediment supply to beaches & nearshore habitat
- Nutrient supply
- Salinity fronts
- Turbidity frons

Flow is important for:

- Maintaining the beaches.
- Maintaining structural & water column habitat
- Biodiversity fresh water flow is a stress (Lamberth et al 2014)

