

Introduction to EFlows for estuarine and marine environments: Concepts & methods

Lara van Niekerk

UNEP, Nairobi Convention 25th to 27th November 2019 Cape Town

JN 🛞 What are estuaries and nearshore?

Important Biophysical Features

- Driven by both river runoff and seawater intrusion
- <u>Longitudinal (and vertical) gradients</u> in salinity & other physical and water quality parameters, influenced by the volume of river inflow and mouth state
- Marked differences between chemistry (or water quality) of river water and seawater, thus volume of river inflow also strongly influence <u>water quality</u> (i.e. not necessarily linked pollution)
- Physical characteristics and water quality usually not result of a single event, but rather that of <u>flow patterns occurring over weeks</u> <u>or months</u>

Important Biophysical Features...

Salinity regime

Conven

Key Biotic components...

United Nations Environment Programme

Importance of River Inflow...

- <u>Regulates mouth status</u> (open versus close):
 - link to marine environment
 - migratory route for estuarine dependent fish & invertebrates

- Regulate <u>salinity gradients</u> require by estuarine biota
- Introduces <u>nutrients</u> to estuaries
- Scour accumulated sediments

 (floods), if not systems may gradually
 fill up

Overarching flow of information

Runoff – Large catchment

Olifants Estuary (Catchment = 49 000 km²)

Runoff – Small catchment

Siyaya Estuary (Catchment = 18 km²)

Delineation & Zonation

Delineation & Zonation

- Geomorphology/bathymetry
- Salinity regimes & responses to flow
- Retention of water (non-linear responses with delays)

Water quality increasing concern

Abiotic States

River

S MOUTH SEMI-CLOSED Estuary Sea STATE 1: The mouth of the estuary is open to the sea, allowing seawater intrusion during high tides, with river inflow introducing freshwater into the upper reaches.

STATE 2: The formation of a sand berm at the mouth prevents continuous seawater intrusion – seawater intrusion is limited to high tides. However, the berm is still not high enough to prevent water draining from the estuary into the sea.

STATE 3: The height of the sand berm at the mouth of the estuary prevents seawater from entering or water draining from the estuary into the sea. Although there may still be river water entering the estuary, the flow rate is too little to facilitate breaching.

Abiotic States

Determine flow ranges associated with abiotic state:

- Correlate observed mouth state with measured flow
- Extrapolate
- Model

Mouth State	Flow Range (m ³ . s ⁻ 1)
State 1: Freshwater dominated - Open mouth	>10
State 2: Brackish - Open mouth	5 - 10
State 3: Closed mouth	< 5

Natural

26/ Conven

Present Day

Conven

Environment Programme

Development Scenarios

Estuary Condition

Condition	≥91%	90-75	75 - 61	60 - 41	40-21	≤ 20
Category	A Natural	Largely natural / few changes	C Moderately modified	D Largely modified	E Highly degraded	Extremely degraded
State	Excellent	Good	Fair		Poor	

UN Estuary Condition at country level

United Nations Environment Programme

Recommended / desired condition

	Estuary Condition						
ce		Good	Fair	Poor	Very degraded		
ortan	Very Important	Good	↑ Good	↑ Good/Fair	↑ BAS		
lmpc	Important	-	Fair	🛧 Fair	↑ BAS		
Estuary	Low /ave importance	-	Fair	-	↑ BAS		

Development Scenarios

Conven

Eflows allocation - Consultative process that allows stakeholders to negotiate the level of utilisation of water resources in a region

Resource Quality Objectives

Inited Nations Invironment Programme

Monitoring

Component	Action	Frequency	Location	
Salinity	Record longitudinal salinity and temperature profiles	Seasonally every year	Entire estuary at 10 stations	
Fish	Record species and abundance of fish, based on seine net and gill net sampling.	Summer and winter survey every 3 years	Entire estuary at 5 stations	
•••				

Fluvially dependant coastal & nearshore environments

Mzimvubu plume Darren Hanner

What does a plume look like?

Orange Nearshore marine 4 & 5 Feb 2011 during 2010/11 flood (Source: DEA Hutchinas & Lamont in press)

What does a fresh water flows do in the coastal and marine environment?

- ✓ Sediment supply to beaches
- ✓ Sustain nearshore marine habitat
- Turbidity fronts
- ✓ Salinity fronts
- ✓ Dissolved reactive silicate (DRS)
- ✓ Nutrient (N and P)
- Pollutants: Concerns in retention zones e.g. bays

Biological responses

Support for ecosystems

- habitats
- microclimates
- life-stages
- Productivity
- Carbon sequestration

Annual juvenile anchovy densities on the West Coast

United Nations Environment Programme

Anchovy density (g.m⁻²)

Juvenile anchovy densities g.m⁻² on the west coast of South Africa during May of each year from 2004 - 2013. Data and map source Dagmar Merkle, DAFF Small Pelagic Acoustic Survey. After Van Niekerk & Lamberth Eds. 2014.

Sediments

- Sediment delivery is a highly episodic process
- Wet years deliver much more sediment to estuaries and nearshore marine environment
- 33% more freshwater inflow under natural conditions
- Dams: relatively higher silt
 & clay fraction due to
 trapping of coarser fractions
 by dams

Marine eflows approach

	STEP		ACTION				
1	DEFINE ECOSYSTEM EXTENT AND RESOURCE USE	•	 Define legislative obligations (biodiversity protection, sustainable fisheries, coastal protection) including treaties & international agreements. Identify ecosystem extent (delineation). Identify key ecosystem functions & services. Identify ecosystem resource use. 				
2	DEFINE BIODIVERSITY & RESOURCE USE TARGETS	•	Identify biodiversity and resource use targets (e.g. fish nurseries, fisheries production, MPAs, beach sediment requirement).				
3	DETERMINE SENSITIVITY TO FLOW	•	 Determine ecosystem sensitivity to present flows: Key abiotic components (e.g. habitat) responses Implications of flow regime on biota (keystone/indicator species life-cycle & habitat requirements). 				
4	ASSES IMPACT OF FLOW SCENARIOS	•	Assess hydrological scenarios - Predicted responses in abiotic drivers & biological components. Implication for marine aquatic ecosystems & resource uses. Recommend eflows.				
5	SET RESOURCE TARGETS	•	Set resource targets (e.g. freshwater flow, river water quality and sediment delivery) for nearshore marine environment				

Link eflows to other processes

- 1. State of Environment reporting
- 2. SDGs
- 3. IUCN Redlisting of ecosystems
- 4. Restoration
- Fisheries production (SA DEFF looking as squid, linefish, small pelagics (anchovy) & small scale fisheries).
- 6. Estuary Management processes.

gef

Determine condition relative to natural for all estuaries using EFlows method

Delineate Coastal Ecosystem at the Country Level Scale

Department of Water and	А	В	с	D	E	F
Sanitation (DWS) ecological condition	Natural	Largely natural	Moderately modified	Largely modified	Highly degraded	Extremely degraded
IUCN RLE ecosystem degradation categories	Natural c (<50	or near natural)% degr.)	Moderately degraded (50–70% degr.)	Severely degraded (70–90% degr.)		Very severely degraded (>90% degr.)
NBA ecological condition categories	Natural Near natural		Moderately modified	Heavily modified	Severely modified	Critically modified
Decreasing ecosystem function & increasing ecosystem restoration cost						

Ecosystem Protecte Level

Some thoughts...

- 1. Collate & simulate the best set of natural, present and future flow data possible (ToRs!!!). IN THE HYDROLOGY!!!
- 2. Delineation of Estuaries and Nearshore environment is critical. (DTM, remote sensing & expert opinion). These areas are larger than you think.
- **3.** Type aquatic ecosystems to assist with determining sensitivity to flow upfront to guide TORs. Keep refining this as data comes in.
- 4. Determine all your uses and pressures (pollution, fishing development) not just flow.
- 5. Estuarine and Nearshore marine processes should be <u>modelled</u> over long time scales (ToRs!!!).
- 6. Imbed in legislative frameworks.
- 7. Natural as reference state to link to other processes State of Environment reporting, SDGs, IUCN Redlisting of ecosystems.

nited Nations

Literature

VAN NIEKERK L., TALJAARD S, ADAMS JB, LAMBERTH SJ, HUIZINGA P, TURPIE JK, WOOLDRIDGE TH (2019). An environmental flow determination method for integrating multiple-scale ecohydrological and complex ecosystem processes in estuaries. Science of the Total Environment 656 (15): 482-494.

VAN NIEKERK L, ADAMS JB, ALLEN D, TALJAARD S, WEERTS S, LOUW D, TALANDA, C, VAN ROOYEN P (2019). Assessing and planning future estuarine resource use: A scenario-based regional scale freshwater allocation approach. Science of the Total Environment 657 (20): 1000-1013.

VAN NIEKERK, L., ADAMS, J.B., BATE, G.C., FORBES, A.T., FORBES, N.T., HUIZINGA, P., LAMBERTH, S.J., MACKAY, C.F., PETERSEN, C., TALJAARD, S., WEERTS, S.P., WHITFIELD, A.K., WOOLDRIDGE, T.H. 2013. Country-wide assessment of estuary health: An approach for integrating pressures and ecosystem response in a data limited environment. Estuarine, Coastal and Shelf Science 130: 239-251.

Thank You