Planning with EFlows – Cubango-Okavango Basin

Mainstreaming of Environmental Flows into Integrated Water Resources Management Cape Town 25-27 Nov 2019

Alison Joubert, Southern Waters, South Africa

Background

- In relatively good condition from source to Delta
- Many are reliant on the natural resources provided by the riverine ecosystem
- ... Improve livelihoods without degrading the river

Background

- Angola, Botswana and Namibia signed the OKACOM Agreement in 1994: Guided by the spirit of managing Cubango-Okavango River Basin as a single entity.
 - "...commits ... member states to ... coordinated and environmentally sustainable regional water resources development, while addressing the ... social and economic needs ... of the riparian states"
 - The three countries recognize that developments upstream can influence the resources downstream.

EFlows in the Okavango

OKACOM

• From 2008 - ongoing:

 Use of the DRIFT eco-social (EFlows) model to compare scenarios of different levels of development and use

 Part of the decision support systems for OKACOM and governments to examine future scenarios

EFlows in the Okavango

Three phases of DRIFT EFlows in Okavango:

• 2008-2010 : TDA

• 2016 : MSIOA

• 2018-2020 : EU and USAID projects

EFlows in the Okavango: TDA

- 2009:
 - Environmental Protection and Sustainable Management of the Okavango (EPSMO)
 - Transboundary Diagnostic Analysis (TDA)
 - Strategic Action Programme (SAP)
- TDA to predict the positive and negative implications of possible future water resource developments; address them pro-actively with a SAP for the basin

2009 TDA EFlows process, model and analysis(1)

- Daily hydrology time-series
- 2. Scenarios of different flow patterns representing different levels of water use:
 - Current
 - Low
 - Medium
 - High

2009 TDA EFlows process, model and analysis(2)

- 3. Specialists from each of the countries formed "discipline" teams for field work; to select indicators and the relevant driving indicators; and to develop response curves
 - Disciplines were:
 - Hydrology
 - Geomorphology
 - Water quality
 - Macro-invertebrates
 - Fish
 - Birds
 - Wildlife, and
 - Socio-economics

2009 TDA EFlows process, model and analysis(1)

- Time series of ecologically relevant flow indicators:
 - Dry season duration, wet season peak flows, etc.
- Several disciplines representing the ecosystem and the people depending on it
 - Indicators within disciplines to represent changes in abundance and condition
- Each indicator linked to a set of "driver" indicators which change with different flow scenarios
 - For each link a response curve defined to describe how the responder reacts to changes in the driver

social, economic

economic consequences

2009 TDA DRIFT model and analysis(4)

2009 TDA DRIFT model and analysis(5)

- Integrative, structured process and decision support system
- Different disciplines, environmental, social, socio-economic can be compared within the same structured system
- Broad level summaries & detailed indicator results
- Co-learning among countries, OKACOM, etc.

consequences

economic

SAP, NAP

Main transboundary concerns

Areas of Concern

Variation and reduction of hydrological flow

Changes in sediment dynamics

Changes in water quality

Changes in the abundance and distribution of biota

Driving Factors

Population dynamics

Land use change

Poverty

Climate change

2016 MSIOA DRIFT model and analysis(1)

- Expanded set of more detailed, specific scenarios of irrigation schemes, dam building, etc.
- Refined indicators and response curves
- Addition of sediment as a driver
- Addition of hydraulics (one site)
- Model already set up; did not require specialists to gather again

	- F
•	Separate (not in DRIFT socio-
	economics)

	Option 1 (BDS3)	Unit
Angola irrigation	55,060	ha
Namibia irrigation	11,660	ha
Total irrigation	66,720	ha
Irrigation abstraction	604	Mm³/yr
Urban abstraction	27	Mm³/yr
Windhoek & CAN	67	Mm³/yr
Total abstraction	698	Mm³/yr
Dams built	Mucundi	
Installed hydroelectric power	105	MW
Total investment for HEC	\$ 3.112	\$ billion
Direct jobs created	40,000	
Total jobs created	160,000	
GDP direct impact	\$2.9	\$ billion
GDP total impact	\$5.9	\$ billion

2016 MSIOA DRIFT model and analysis(1) Basin view per scenario

Working river "Conservation" river Unsustainable

2019-ongoing

EU and USAID

- Programme for Transboundary Water Management in the Cubango – Okavango River Basin;
- Resilient Waters Programme: Cubango-Okavango Basin DRIFT update

DRIFT EFlows model:

- More explicit inclusion of land-cover / land-use
- Expansion of ecosystem services, livelihoods, social component
- Further refinement of indicators, ecosystem links and response curves
- Addition of five sites

2019-ongoing

- DRIFT EFlows model:
 - Additional specialist input for:
 - Additional ecosystem services integration
 - Geomorphology
 - Vegetation
 - Fish
- More formal integration into broader OKACOM DSS
- Integration with monitoring
- OKACOM personnel to run DRIFT-DSS in future

2019-ongoing

Thank you