Marine biogeographic realms and species endemicity

Year Published: 
Topics of the content: 
Geographical Information: 


Marine biogeographic realms have been inferred from small groups of species in particular environments (e.g., coastal, pelagic), without a global map of realms based on statistical analysis of species across all higher taxa. Here we analyze the distribution of 65,000 species of marine animals and plants, and distinguish 30 distinct marine realms, a similar proportion per area as found for land. On average, 42% of species are unique to the realms. We reveal 18 continental-shelf and 12 offshore deep-sea realms, reflecting the wider ranges of species in the pelagic and deep-sea compared to coastal areas. The most widespread species are pelagic microscopic plankton and megafauna. Analysis of pelagic species recognizes five realms within which other realms are nested. These maps integrate the biogeography of coastal and deep-sea, pelagic and benthic environments, and show how land-barriers, salinity, depth, and environmental heterogeneity relate to the evolution of biota. The realms have applications for marine reserves, biodiversity assessments, and as an evolution relevant context for climate change studies.


Introduction

While the occurrences of marine fauna and flora clearly differ between parts of the oceans, whether biogeographic boundaries, and thus definable realms of endemicity, exist has not been clear. Consequently, a centuries old tradition of mapping global marine regions has not produced a single robust regionalization based on empirical species distribution evidence12. Indeed, Ekman1 and Briggs2 stated that there was little evidence for biogeographic boundaries in the ocean. In contrast, boundaries of terrestrial realms were proposed by Wallace 140 years ago, and recently supported by empirical data analysis3,4,5,6,7. If marine boundaries exist, they would indicate the relative importance of factors that have caused the present distribution of marine species at a global scale, such as continental drift, temperature, sea-level rise, and glaciation. Knowledge of the relative endemicity and cosmopolitanism of different taxa, varying in body size, and pelagic and benthic lifestyles, will inform estimates of global species richness because more widespread taxa may be expected to have less species due to higher gene flow8,9,10.

 

Intellectual Property: 
Copyright